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A method is described for calculating the motion of N spherical particles suspended in 
a quiescent second-order fluid. The method requires calculation of only the low- 
Reynolds-number Newtonian velocity profile. This profile is used in conjunction with 
what has been called the ‘Reciprocal theorem method’ to evaluate particle velocities 
accurate to leading order in the Deborah number. If the Newtonian velocity field is 
found by a multipole moment expansion, then it is shown that the method can be 
integrated neatly into the Stokesian dynamics method of simulating Newtonian 
suspensions. Simulation results involving two, three, four and six particles are reported 
as illustrative examples, and are compared with corresponding results for particles in 
Newtonian fluids and with experimental results found in the literature. In addition, 
simulations of sedimenting suspensions are performed by using periodic boundary 
conditions to model an unbounded system, and the observed formation of clusters in 
the sedimenting system is shown to be in qualitative agreement with experimental 
observations. 

1. Introduction 
The motion of small particles in viscous fluids is of fundamental interest in areas 

such as microhydrodynamics (Kim & Karrila 1991) and colloid science (Russel, Saville 
& Schowalter 1989), and is of practical interest in a number of suspension-processing 
operations. Methods for calculating hydrodynamic interactions between N suspended 
particles have been a subject of intensive research for some time, and several 
approaches have been developed, including the method of reflections (Happel & 
Brenner 1986), boundary collocation (Ganatos, Pfeffer & Weinbaum 1978), boundary 
integral formulations (Kim & Karrila 1991) and Stokesian Dynamics (Brady & Bossis 
1988), the latter being closely related to the method of multipole moments (Weinbaum, 
Ganatos & Zong-Yi 1990). However, because of the complexity of N-body low- 
Reynolds-number hydrodynamics problems, relatively little work has been done to 
incorporate effects due to inertia or non-Newtonian behaviour into these methods of 
solution. In this work the effect on particle motion of weak elasticity in the suspending 
fluid is examined and comparisons are made with the corresponding low-Reynolds- 
number Newtonian case and with experimental observations. 

In contrast to the N-body problem, a significant amount of theoretical work has 
been done to understand the effect of elasticity on the motion of a single spherical or 
non-spherical particle in various flow fields. Reviews that discuss much of that work, 
particularly the results obtained by perturbation methods, have been given by Leal 
(1979) and Brunn (1980). Many of these investigations make use of the second-order 
fluid constitutive equation, which becomes valid in the limit where the Deborah 
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number De, defined as the ratio of the fluid relaxation time to the time scale of a given 
flow, approaches zero. The second-order fluid constitutive equation is one of a series 
of constitutive equations obtained by the retarded motion expansion (Bird, Armstrong 
& Hassaguer 1987). Although few if any fluids can be classed as ‘second-order fluids’, 
most well-known constitutive models reduce to the retarded motion expansion in the 
limit of low Deborah number. It is therefore expected that useful qualitative 
information can be obtained through use of the second-order result. In addition, it is 
useful to examine theoretically the effects of weak elasticity in the absence of shear- 
thinning, even if such systems are difficult to realize in practice. Numerical results that 
were obtained for flow around a single sphere that are valid at higher Deborah 
numbers and which account for shear-thinning in the suspending fluid are also 
available (i.e. Lunsmann et al. 1993; Bush & Phan-Thien 1984; Chhabra & Uhlherr, 
1980). 

It is interesting to compare results predicted for particle motion in second-order 
(low-De) and Newtonian (zero-De) fluids under conditions of zero Reynolds number, 
many results for the latter case being required by the reversibility condition for Stokes 
flow. In a Newtonian fluid, a spherical particle suspended in a unidirectional shear flow 
does not migrate across streamlines, and a sedimenting, transversely isotropic particle 
maintains its initial orientation. In contrast, in a second-order fluid the spherical 
particle migrates in the direction of decreasing shear rate (Chan & Leal 1977) and the 
sedimenting particle orients itself such that its axis of revolution is in the direction of 
sedimentation (Kim 1986). Finally, in a second-order fluid the well-known Jeffrey 
orbits of ellipsoidal particles in shear flows are altered such that the particles drift 
towards a preferred orbit (Leal 1975). 

A number of these theoretical results have provided an explanation for behaviour 
observed experimentally. Lateral migration across streamlines has been observed in 
Couette and Poiseuille flows, and the fact that non-spherical particles assume a 
preferred orbit when rotating in a shear flow in viscoelastic fluids was shown in a series 
of studies by Mason and co-workers (Gauthier, Goldsmith & Mason 1971 ; Karnis & 
Mason, 1967; Bartram, Goldsmith & Mason 1975). Also, the tendency of particles to 
settle in the direction of their axis of rotation in fluids exhibiting elasticity, providing 
inertial effects are negligible, is well-established (Chiba, Song & Horikawa 1986; Liu 
& Joseph 1993). 

The area of two- or multi-particle dynamics in viscoelastic fluids is not as well- 
studied as the single particle case, but some useful and interesting results are available, 
of which we mention but a few. Michele, Patzold & Donis (1977) showed that, when 
subjected to an oscillating shear flow, spherical particles align in rows that grow 
progressively longer over time. This observation is consistent with the earlier work by 
Highgate & Whorlow (1969), and it has since been shown that the direction of 
alignment can be affected by the relative importance of elastic and inertial effects (Petit 
& Noetinger 1988). Riddle, Narvaez & Bird (1977) showed that two spheres 
sedimenting in a tube move together or apart depending on whether their initial 
separation is less or greater than a critical value. With regard to theoretical work, the 
only multiparticle results available for second-order fluids are asymptotic results 
calculated by Brunn (1977a, b, 1980). Brunn shows that particles sedimenting in a 
quiescent, unbounded second-order fluid move together to form a doublet, which is 
oriented such that sedimentation occurs in the direction of the line joining the two 
sphere centres. 

Some experimental observations for spheres sedimenting in otherwise quiescent 
viscoelastic fluids are particularly relevant to this work. Joseph et al. (1992, 1994) show 
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photographs in which sedimenting spheres form elongated aggregates and, in many 
cases, chains that are many spheres long. The elongation is in the direction of 
sedimentation for viscous-dominated systems and is perpendicular to the direction 
of sedimentation when inertia becomes important. Allen & Uhlherr (1989) studied 
sedimentation in viscoelastic fluids by backlighting the cell containing the suspension 
and taking photographs. In a Newtonian fluid, a monomodal suspension settles 
homogeneously with a sharp interface between the suspension and supernatant. In 
contrast, when the fluid is viscoelastic, very often both globular and ' finger-like ' 
particle-rich and particle-depleted regions are observed, and no sharp interface is 
formed. 

In this paper, a method is described for calculating the interactions between N 
spherical particles in a second-order fluid. The approach makes use of what Brunn 
(1 980) has termed the ' Reciprocal theorem method ', which requires knowledge of only 
the Newtonian velocity field. A similar approach has been used to study the effects of 
a small amount of inertia on the force on a rigid particle (Lovalenti & Brady 1993). It 
is valid in principle for arbitrary sphere locations, being limited in practical terms only 
by the accuracy of the Newtonian velocity field that is used. Here that velocity field is 
obtained by a multipole moment expansion. The correction terms needed to account 
for elasticity are then readily incorporated into Stokesian dynamics simulations, 
allowing comparisons to be made with earlier Newtonian results and raising the 
possibility of dynamically simulating suspensions at low Deborah number under 
various flow conditions. 

The organization of the paper is as follows. In $2 the governing equations are 
presented and separated into zero- and first-order components by perturbation 
analysis. The methods for solution for the Newtonian case and for the equations 
governing the non-Newtonian terms are outlined in $3.  The methods are applied to 
two- and multi-sphere problems in $4, and comparisons are made with earlier results 
and experimental observations found in the literature. In particular, direct comparisons 
are made with three- and four-sphere simulation results reported by Durlofsky, Brady 
& Bossis (1987), and qualitative comparisons are made with the observations of Joseph 
et al. (1992, 1994) and Allen & Uhlherr (1989). 

2. Problem formulation 
We consider N identical spheres with radius a and surfaces denoted by S,, S,, . . . , S,. 

The spheres are all subject to the same gravitational force, are free of any applied 
torque, and are suspended in a viscoelastic fluid. The objective is to compute the sphere 
velocities to O(De) for arbitrary sphere positions, assuming a second-order constitutive 
model for the fluid. Here we define the Deborah number for the sedimentation process 
by 

(1) 

In (I) ,  the parameter h is the relaxation time for the fluid, 7, is the time for a single, 
isolated sphere to sediment a distance of one radius a, p p  and pf are the particle and 
fluid densities, respectively, and vo is the fluid viscosity, which is constant since second- 
order fluids do not exhibit shear-thinning. The solution is obtained by applying a 
perturbation analysis, and then using Stokesian dynamics to solve the zero-order 
problem and the Reciprocal theorem method mentioned above to solve the first-order 
problem. Note that, because the second-order fluid model is only valid for small 
Deborah numbers, using a perturbation analysis does not impose any new restrictions 

D e s = - = h (  %a@, 91;10 - Pf) ). 
7.3 
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on the validity of the solution. In addition, since most well-known constitutive models 
reduce to the second-order fluid model for small Deborah numbers, that model should 
be sufficient for calculating sphere velocities to O(De), thereby providing qualitative 
insight into changes due to the presence of elasticity. 

Following Bird et al. (1987), we express the stress in the fluid z in terms of the 
retarded motion expansion, which to terms of second order yields 

= - [ T Y ( l ,  + b2 Y ( 2 )  + bl, Y ( 1 )  - Y(1)1 ,  

with the rate-of-strain tensors defined by 

Y(,) = vu + vut ( 3 )  

and (4) 

where u is the fluid velocity. In terms of the first and second normal stress differences 
!PI and Y2, the coefficients b, and b,, are given by 

b 2 z-1” 2 1  ( 5 )  

and b,, = ul,. (6)  

To non-dimensionalize the equations of motion, we define K as a characteristic shear 
rate and use as a characteristic length the sphere radius a. For sedimentation, the shear 
rate K is just 1/7,(Cf. (1)). The Deborah number, defined as a ratio of characteristic 
times for the fluid and the flow field, respectively, is obtained by identifying 1 / ~  as a 
time scale for the flow and - b2/T as that for the fluid. The latter fluid time scale is 
consistent with that found from linear viscoelasticity models. Non-dimensionalizing 
the rate-of-strain tensors in (2) with h then gives 

+ = - i ( 1 )  +Mi(,) + 4, i ( 1 )  i (J> (7) 

where the dimensionless coefficient B,, is given by B,, = bll/b2 and the stress .i = 7 / 7 ~ .  
Assuming that inertial effects are negligible, the equations of motion and continuity 

can be expressed as 
-Vd+V..i = 0 (8) 

and 0-u = 0. (9) 
We now introduce a perturbation expansion in powers of De, which is taken to be 
small, according to 

D = u,+Deh, (10) 

and d = do  + Debl, (1 1) 
where li = U / U K  and 6 = p / q ~ .  Substituting into (8) and (9) yields as the zero- and 
first-order problems : 

zero order v.fio = 0, (12) 

first order 

v.iio = 0 ;  

V d ,  = 0, 

v * u ,  = 0. (15) 
The zero- and first-order stresses in (12) and (13) include the pressure, and are given 
by 

fi” = -do /+ h ) O  (16) 
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and 

where / is the identity tensor and the rate-of-strain tensors are non-dimensionalized 
using appropriate powers of the characteristic shear rate K .  Thus, the zero-order result 
is the solution to the Stokes flow problem, while the first-order equations resemble 
Stokes equations but have a non-homogeneous term that depends nonlinearly on the 
zero-order velocity field. 

3. Method of solution 
3.1. Zero-order solution 

Because the zero-order problem is identical to a Stokes flow problem, any of a number 
of approaches could be used to obtain a solution. Here the Stokesian dynamics method 
is used because it has been shown to give accurate results for spheres in arbitrary 
locations and because it is readily applied to dynamic simulations (Durlofsky et al. 
1987; Brady et al. 1988; Phillips, Brady & Bossis 1988a, b). The one exception is the 
problem of two spheres sedimenting along their line of centres, which we solve using 
both Stokesian dynamics and the method of reflections for purposes of comparison. 

The details of Stokesian dynamics are described elsewhere (Durlofsky et al. 1987; 
Brady & Bossis 1988), and so only some key elements are summarized here. In this 
method, sphere interactions are separated into far-field and near-field components. 
Far-field perturbations to the fluid velocity caused by the particles are calculated by 
using a multipole moment expansion, which is used in conjunction with FaxCn's laws 
to relate the perturbations in the fluid velocity to the corresponding perturbations in 
sphere velocities. Near-field, or lubrication interactions are incorporated into the 
resistance matrix by using a pairwise additivity approximation. For nearly touching 
particles in relative motion, this method of computing near-field interactions yields 
quantitatively accurate results. For spheres that are not in relative motion, such as 
those modelling constituents of a porous medium, lubrication forces are not important 
and the accuracy of the method is limited by the number of terms kept in the far-field 
multipole moment expansion (Phillips et al. 1988a, b). As commonly used, Stokesian 
dynamics does not require that one calculate the fluid velocity since the use of FaxCn's 
laws allows one to compute the sphere velocities directly. In other words, the forces, 
torques and stresslets on the spherical particles are related directly to their translational 
and rotational velocities without explicit calculation of the fluid velocity. 

For spheres in a quiescent fluid, this relationship is represented by a matrix equation 
of the form 

The subscripts on the vector quantities refer to the dimension of the vector: &,, is a 
vector containing the three elements of the force vectors for each of the N particles, and 
so on. The matrix relating the two vectors is the grand resistance matrix, and is 
composed of smaller matrices that relate forces to translational velocities (RFU),. forces 
to rotational velocities (RPQ), and so forth. It should be noted that the grand resistance 
matrix depends only on the sphere positions, and is independent of what particular 
combination of forces and torques is being applied to the spheres. 

As stated above, the Reciprocal theorem method that is used here to solve the first- 
order problem does require the zero-order solution for the fluid velocity, and not just 
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a result for motion of the spheres as given in (18). This fluid velocity field can be 
obtained by going back to the multipole moment expansion that is an intermediate step 
in the Stokesian dynamics method, and reconstructing the velocity according to 

8x11 a 
Here F, L and S are the forces, torques and stresslets on the particles, J is the Oseen 
tensor, and R and K are propagators defined in terms of gradients of the Oseen tensor. 
A mathematical development of (19) and formal definitions of the moments F, L and 
S and the propagators J, R and K are given by Durlofsky et al. (1987). The superscript 
a is a sphere label that varies from 1 to N .  Once the forces, torques and stresslets are 
known, either by being specified as part of the problem or by being calculated from 
(18), the velocity field valid in the far-field limit can be found directly from (19). For 
the problem of N sedimenting spheres considered here, the forces are non-zero and are 
specified as the gravitational force, and the torques are zero. Therefore, only the 
stresslets must be calculated from (18). 

3.2. First-order solution 

The solution to first order is obtained by using the Reciprocal theorem method alluded 
to above. We begin by defining an auxiliary Stokes flow problem. In the auxiliary 
problem, N identical spheres with radius a are suspended in a Newtonian fluid in the 
same positions as in the original problem. Either the forces and torques or the 
translational and rotational velocities may be specified in a manner that is most 
convenient for a particular problem. Specific choices for the problem at hand are 
discussed below. We denote the velocity and pressure for the new problem as u and q, 
and the stress by c. The governing equations are then 

V * &  = 0 (20) 

and v-ir = 0, (21) 
where & = - q + e  (22) 
and e is the rate of strain given by e = Vir + ViY. Note that the grand resistance matrix 
for this new problem is identical to that for the zero-order solution to the original 
problem, since the resistance matrix only depends on the sphere positions. 

From equations (14) and (20), it must be true that 

[ ir - (V fiJ - U, - (V . &)I d V = 0, (23) s,,, 
where vf is the fluid volume and does not include the spheres. Rearranging (23) gives 

V.[ir.~,-U,-&]dV- [fi,: Vir-6: VU,]dV= 0. 
"f J", 

Applying the divergence theorem to the first integral in (24) and substituting the 
definitions from (17) and (22) into the second yields 

n.(ir-fi,-U,*&)dS = [(i)~2~0+B11i)~1)0.i)~1)0): VirIdV, (25) ? s,; J V j  

where the continuity equations (1 5) and (2 1) have been used to simplify terms. 
We now make use of the fact that, on sphere surfaces, the velocity ir and the 

perturbation velocity G, are constrained by the no-slip condition to be a superposition 
of translational and rotational sphere motion. Also, the O(De) forces and torques 
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(surface integrals of fil) must be zero since the applied torques are zero and the applied 
forces are completely accounted for in the zero-order problem. Making the appropriate 
substitutions into the surface integral in (25) then gives 

C @ . F ; + Q G ; . ~  = J ~ ( ~ ~ z ~ o + ~ l l ~ c l ~ o ~ ~ ~ l ~ o ) :  VS]dV. (26) 
a V f  

Here Q and @ are the desired O(De) perturbation velocities and P; and L; are the 
applied force and torque in the auxiliary problem. Appropriate choices for F; and 
allow one to calculate the velocity corrections using only solutions to Stokes flow 
problems. 

As an example which shall be of use below, for our auxiliary problem we choose the 
forces and torques on all the particles to be zero, with the exception of particle p, which 
has a non-zero force F!. Equation (26) then simplifies to 

ofl-e 1 = JvfKh*+Bll  f f ( l ) o ~ ~ ( ~ ) o ) :  VfiIdV. (27) 

Equation (27) provides a means for calculating the O(De) corrections to the three 
components of the zero-order sphere velocities. Choosing F{ equal to a unit vector in 
the x-direction and substituting the appropriate velocity field into the volume integral 
yields Qz, and the y and z components are calculated similarly. Evaluation of the 
integral requires only the Newtonian velocity profiles, which can be found by a 
multipole expansion such as (19) or by other techniques such as the method of 
reflections, as discussed in $4. 

For incorporation of this method into Stokesian-dynamics-like simulations of the 
motions of N spheres, it is convenient to choose an alternative auxiliary problem which 
corresponds to a ' resistance ' formulation, in which particle velocities are specified 
rather than applied forces and torques. We specify either the translational or rotational 
velocity of sphere p of the auxiliary problem to be non-zero, while specifying that all 
other translational and rotational velocities be zero. The forces and torques F; and 
in (26) can be calculated from the resistance matrix as shown in (18). If the 
dimensionless translational and rotational velocities of the auxiliary problem are 
chosen to be unit vectors in the three coordinate directions, then substitution of the 
result for F; and e into (26) yields a set of linear equations of the form 

Here S,, is the velocity vector obtained by setting each component of translational or 
rotational velocity equal to unity for each sphere while keeping all other velocity 
components equal to zero. One sees that, owing to the use of the perturbation 
expansion in De, the nonlinearity in the original problem now occurs only in the known 
terms on the right-hand side. Multiplication of (28) by the Deborah number De and 
adding it to the zero-order equation (18) then yields a single matrix equation for the 
particle velocities accurate to O(De). In effect, the volume integral in (28) acts as a 
correction to the applied forces that, once calculated, can be incorporated directly into 
the Stokesian dynamics simulation. 

3.3. Surface integral formulation 
Implementation of (27) or (28) for simulating particle motion at low Deborah number 
is made considerably more efficient by expressing the volume integral as a surface 
integral. This simplification can be made if one assumes a value of unity for the 



352 R. J. Phillips 

parameter Bll. We note that realistic values are likely to be closer to 0.5 or smaller 
(Bird et al. 1987). However, the factor of two difference is not expected to alter 
significantly the qualitative changes in behaviour of interest here, an assumption that 
is supported by results for the two-sphere problem discussed below. In the development 
that follows we drop the notation, with the understanding that all quantities in this 
section are dimensionless. 

Letting B,, = 1, we have for the integrand of (26) 

( Y ( z ) o + Y ( l , o - Y ( l , o ) :  vv = ~ ~ ~ ~ Y ( z , , + Y ( l , o ~ Y ( l , o ~ ~ ~ l - " V ~ ~ Y , z ) o + Y ( l , o ~ Y , l , o ~ l ~ ~ .  (29) 

We now make use of Giesekus' identity (Bird et al. 1987), which states that 

Substituting into (29) and noting that 8 - u  = 0, we find for the integrand 

Application of the divergence theorem then yields 

(3 2) 

Equation (32) is a scalar equation that must be applied six times, corresponding to six 
different auxiliary problems, to calculate the O(De) perturbation to the translational 
and rotational velocity of a given particle. We note that, when using the auxiliary 
problem in which one particle is translating or rotating and all others are stationary, 
the summation over all particle surfaces is not necessary since the velocity u will be non- 
zero only on one surface. In addition, as with (26), the left-hand side can be written in 
matrix form and the right-hand side as a 6N-dimensional vector to represent the 6N 
linear equations, which are then easily combined with (18). 

Further manipulation of the surface integral in (32) is useful for evaluating the time 
derivative @,,/at that is part of the material derivative term Dpo/Dt and the time 
derivative i3y(l)o/i3t that comprises part of y,z,o (cf. (4)). We first impose the no-slip 
condition on the particle surfaces, so that 

u =  V + W x r " ,  (33) 

where V and W are the translational and rotational velocities imposed through the 
auxiliary problem (i.e. unit vectors) and ra = r -  i-& where r; is the position of the centre 
of sphere 01. 

Upon substitution of (33) into (32), the surface integral can be separated into two 
parts, one proportional to V and the other to W. The time derivatives in the term 
proportional to V are 

where Fa is the externally applied force on particle 01. In equating the two terms in (34) 
we have used the definition of the zero-order stress no given in (16). Also, following 
Brunn (1977a, b), we have denoted S, as a space-fixed surface which momentarily 
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coincides with the particle surface. The time derivatives in the term proportional to W 
are 

By using the fact that aP/at = - U;, it is straightforward to show that the right-hand 
side of (35) simplifies to 

The surface integral form of (28) (valid when B,, = 1) can now be written and added 
to the zero-order matrix equation (1 5) to yield a Stokesian-dynamics-like simulation 
method that accounts for leading-order effects of viscoelasticity. The result is 

(37) 

The translational and rotational velocities in (37) are accurate to O(De). Each three- 
component vector of the correction forces and torques FiN and LiN is given by 

I .  R F U  &T + De FjN 
[R,, 2Ikl= [ L,N + De LjN 

aL" 
at r" x K~O.VY~l)O - v4.  Y m o  - Y(1)O'  vuo + Y ( 1 ) O '  Y ( l ) 0 ) 4  dS. 

(39) 

We note that (38) and (39) are consistent with the single-particle result of Brunn 
(1977a), which was verified for ellipsoidal particles by Kim (1986). In the sedimentation 
problem to be considered in the next section, both time derivatives in (38) and (39) are 
zero. The U; x Fa term in (39) is zero for a single sphere in an unbounded fluid, but 
is in general non-zero for non-spherical particles and for systems with two or more 
spherical particles. 

As a final point, we note that even in conditions where the global or average 
Deborah number is small, it is possible that in a particular region of fluid, such as 
between two particles in relative motion, the local Deborah number may not be small. 
Thus, the error due to the use of a perturbation expansion in De could compound the 
error caused by the use of a far-field approximation to the fluid velocity when 
calculating the interaction between nearly touching spheres. The calculations below are 
therefore restricted to dilute systems, and it is assumed that the qualitative behaviour 
of interest is not significantly affected by these limitations when spheres are close 
together. Comparisons with experimental observations tend to support this as- 
sump tion. 

L'" = -+ u" x Fa-  

4. Results and discussion 
In this section, the development above is used to calculate the O(De) correction to 

sphere velocities for problems involving two- and multi-sphere interactions. Two- 
sphere results are calculated by evaluating the volume integral in (27), while the many- 
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sphere results are obtained by application of (37). Previous results are available in the 
literature for the one-sphere problem (Brunn 1976), and also the two-sphere problem, 
providing the sphere separation is large (Brunn 1977b). To the best of our knowledge, 
solutions to problems involving interactions between more than two particles in 
second-order fluids are not available in the literature. However, it is interesting to 
recompute the Stokesian dynamics calculations of Durlofsky et al. (1987) to observe 
the leading-order effects of viscoelasticity. These results and results from simulations 
of the sedimentation of unbounded suspensions are also compared qualitatively with 
experimental observations (Allen & Uhlherr 1989; Joseph et al. 1992, 1994). 

4.1. The interaction between two spheres 
Once one moves from a one-sphere to a two-sphere problem, hydrodynamic 
interactions become important and must be taken into account in some fashion. The 
problem of two spheres sedimenting parallel or perpendicular to their line-of-centres is 
analysed here, while results of dynamic simulations involving more than two spheres 
are presented in 54.2. Two approaches are used to calculate the integral in (27): 
Stokesian dynamics in conjunction with the multipole moment expansion (19), and the 
method of reflections. For both problems, the O(De) contribution to sphere motion 
moves the spheres together along their line-of-centres, with other components of 
being zero. The results are presented in terms of two coefficients, C, and C,, which are 
defined by 

where @ is the component of along the line-of-centres and CL can be 1 or 2. 
Comparison with (27) shows that C, can be expressed as a volume integral of f(2)o,  

while C, can be expressed as a volume integral of i(l)o.f(l)o. The factor (- l)afl 
accounts for the fact that, in two-sphere problems, symmetry results in the O(De) 
perturbation in one sphere's velocity being equal to the negative of the perturbation to 
the other sphere's velocity. 

Q = (- 1)"+1(C, + B,, C,), (40) 

Multiple moment expansion 
We begin with the problem of two spheres sedimenting along their line-of-centres. 

Spheres 1 and 2 are located at x = 0 and y = fl  and -if, respectively. Both spheres are 
subject to a unit force in the -ey direction. As our auxiliary Stokes flow problem 
defined in terms of the velocity and pressure i, and 8, we choose two spheres at the same 
position, but we let the sphere at y = -fl be force-free while the sphere at y = fl  is acted 
upon by a force equal to ex, ey or e,. Choosing the force in either the ex or e, directions 
verifies the result stated above that the O(De) perturbation is only non-zero in the 
direction along the line-of-centres, which in this case is the ey direction. Choosing the 
force in the ey direction then allows one to calculate C, and C, from (27). 

The procedure is as follows. The force on each sphere is known both for the actual 
problem and for the auxiliary problem. Thus, the Newtonian sphere velocities are 
found by solving the matrix equation (18). The grand resistance matrix in ( 1 8 ) ,  which 
is obtained by the Stokesian dynamics method, is exact for two-sphere problems. With 
the sphere velocities known, the stresslet S2 induced on sphere 2 (at y = -$l) due to 
the force applied to sphere 1 (at y = $1) can be found by straightforward matrix 
multiplication, again using ( 1  8). Finally, the velocities and velocity gradients needed to 
compute the integral in (27) are found by making use of (19). The contribution from 
each sphere is calculated from the leading-order term (force, torque or stresslet) in (19), 
and the integration is performed in bipolar coordinates. 
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FIGURE 1. Coefficients C, and C, defined in (40) are plotted as a function of sphere position 1 for two 
spheres sedimenting (a) along their line of centres and (b)  perpendicular to their line-of-centres. Solid 
curve is the asymptotic result of Brunn (1977b). Squares are the results obtained by using the 
multipole moment expansion, and circles in (a) are results from the method of reflections. Open 
symbols are C, and closed symbols are C,. 

The results for C,  and C ,  are shown in figure 1. Both coefficients are positive for all 
values of I ,  indicating that the effect of elasticity in the fluid is to speed up the upper 
sphere and slow down the lower sphere. This of course causes the two spheres to move 
together, in contrast to the Newtonian case where the separation remains constant. The 
fact that both C, and C,  increase as the separation 1 decreases means that the spheres 
move together increasingly faster as they come together. Also shown is the result of 
Brunn (1977b), who predicted that the two coefficients are equal in the far-field limit 
and that they are given by 

(41) 

Clearly Brunn’s result is in excellent agreement with those found from (27) when 1 is 
greater than about 15. 

For comparison, the velocity field for two spheres moving along their line-of-centres 
has also been calculated by using the method of reflections. These calculations were 
performed by using the solution reported by Happel & Brenner (1986) and incorporates 
terms from the first five reflections. Gradients of the velocity field were evaluated by 
direct term-by-term differentiation, and again the volume integral of (27) was evaluated 
in bipolar coordinates. The results, shown in figure 1 ,  confirm both the asymptotic 
solution of Brunn (1977b) and the results obtained by using the multipole moment 
expansion. Finally, we note that if one assigns a value of unity to the coefficient B,,, 
then the sum C ,  + C, can be calculated via the surface integral formulation and (37), 
and one again finds similarly good agreement. This latter calculation is verification of 
the computer programs used to obtain the results, since both the auxiliary problems 
used in the derivations of (27) and (37) and the detailed computation for the two cases 
are quite different. 

The prediction of the second-order fluid constitutive model that two sedimenting 
spheres always move together is in apparent contradiction with the observations of 
Riddle et al. (1977), who found that two spheres in a tube move apart if the initial 
separation is large. This separation behaviour is often explained in terms of the 
negative wake that is present when particles sediment in viscoelastic fluids (Bisgaard 
1983). The fact that two spheres in a second-order fluid move together may therefore 

c, = c, = ; ( 1 / 1 ) 2 .  



356 R. J .  Phillips 

suggest that this model does not accurately capture the negative wake effect, a 
characteristic which is also true of the convected Maxwell model (Satrape & Crochet 
1994). It has also been suggested (McKinley, Armstrong & Brown 1993) that the 
negative wake is closely connected with shear-thinning, a rheological feature that is not 
captured here. 

The case of two spheres sedimenting in a direction perpendicular to their line-of- 
centres is handled in an analogous fashion. Spheres 1 and 2 are at x = -fl and x = fl, 
respectively, and both are subject to a unit force in the -ey direction. Results for C, 
and C, obtained by using the multipole moment expansion are plotted as a function 
of the separation 1 in figure 1 (b). Again, both coefficients are positive, indicating that 
the spheres move together at a rate that increases with decreasing 1. This motion is 
qualitatively different than that observed in a Newtonian fluid, where the principle of 
reversibility requires that the sphere separation remain constant. The result of Brunn 
(1977 b), given by 

(42) 

is also shown in figure 1 (b) for comparison. As with the case of spheres moving parallel 
to their line-of-centres, agreement is excellent in the far-field limit. 

c, = c, = i(1/1)2 

4.2. Dynamic simulations at low Deborah number 
We now consider the case where the coefficient B,, is unity, allowing use of the surface 
formulation of the problem as given by (37). The result in (40) for the motion of two 
spheres, together with the far-field solutions for C, and C, given by (41) and (42) (and 
in figure l), show that C, and C, behave similarly, and hence the qualitative effects of 
elasticity are not changed by assuming a particular value of Bl, .  Although in a 
simulation the effect of elasticity on particle motion is very small for each individual 
time step, as shown below the cumulative impact over many time steps can be quite 
dramatic, and can completely alter the qualitative nature of the solution. Unless 
otherwise indicated, the results shown in this section were computed using a Deborah 
number of De = 0.1. The time integrations were performed by using a fourth-order 
Runge-Kutta routine. The maximum dimensionless time step used was 0.25, where time 
is made dimensionless by 7s, the time for a single sphere to sediment a distance of one 
radius a. The surface integrations were performed by applying Simpson’s rule with 41 
nodes. 

We begin by reconsidering three- and four-sphere simulations initially performed by 
Stokesian dynamics (Durlofsky et al. 1987) for spheres in Newtonian fluids. We 
consider three spheres aligned in a row along the x-axis, located at x = -5,  0 and 7. 
The spheres are subject to a force of unity acting in the - e ,  direction, and hence the 
sphere centres never leave the (x, y)-plane. The trajectories calculated by Stokesian 
dynamics are recomputed here for comparison, and are shown in figure 2(a) .  The 
spheres follow surprisingly varying paths, but after falling a distance of approximately 
830 sphere radii they all have similar y positions. Each point in figure 2(a) and in the 
similar trajectories shown in figures 2(b), 4 and 6 below denote a change of 10 
dimensionless time units. 

The corresponding result for three spheres in a second-order fluid at a Deborah 
number of 0.1 is shown in figure 2(b). Because this result is an O(De) perturbation from 
the Newtonian case, the sphere trajectories are initially very similar. However, the 
interaction between the sphere initially a t  x = - 5 and that initially at x = 7 causes a 
dramatic change at a dimensionless time of approximately 200. Those two spheres 
ultimately form a doublet located at x = 4.5 and falling vertically, while what started 
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FIGURE 2. Trajectories of three spheres sedimenting in (a) a Newtonian fluid and 
(b) a second-order fluid at De = 0.1. Initial x-positions are -5, 0 and 7. 
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FIGURE 3. Schematic diagram of the sedimentation of three spheres 
initially at the vertices of an equilateral triangle. 

out as the middle sphere is eventually located at x = 0.44. Because a doublet falls faster 
than a single sphere, the vertical distance between the spheres grows, reaching a value 
of 174 at a time of 600, and becoming increasingly larger after that time. We note that 
at this large separation the interaction between the single sphere and the doublet is 
negligible. Since an isolated sphere or two-sphere doublet in a second-order fluid falls 
with the same velocity as in a Newtonian fluid, the effects of elasticity are only 
significant in the initial stages of the simulation. 

Interestingly, if one starts a three-sphere simulation from a more ordered 
configuration, the behaviour is considerably less erratic. Several simulations have been 
performed in which the spheres are initially at the corners of an equilateral triangle, the 
coordinates (x,y) of spheres 1, 2 and 3 being given by (O,O), (ilt,:d31t) and ( l t , O ) ,  
respectively. As discussed by Ganatos et al. (1978), in a Newtonian fluid, following 
application of a unit force in the -ev direction, sphere 2 falls faster than the others 
until eventually all three spheres lie equally spaced in a row. This process is depicted 
in figure 3. Sphere 2 continues to fall the fastest, falling below spheres 1 and 3, which 
move together until the distance between them is infinitesimally small. 

Very similar behaviour is observed in the simulations for a second-order fluid. 
However, there are some quantitative and qualitative differences. For example, for 
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FIGURE 4. (a) Schematic diagram and (6) plotted trajectories of four spheres undergoing a periodic 
inversion process while sedimenting in a Newtonian fluid. Spheres are initially located at the vertices 
of a square. 

I, = 8 the time for the spheres to form a horizontal row is 105.0 for the Newtonian case 
and 100.3 in the second-order fluid, and the sphere separations in the row differ 
slightly, being 7.4 for the Newtonian case and 7.2 in the second-order fluid. Also, 
regardless of the value of the side length, in the second-order fluid the three spheres 
always evolve into the same configuration, with spheres 1 and 3 two radii apart and 
sphere 2 midway between and a distance of 2.82 below the others. Such a constant 
configuration is not possible in the Newtonian case, since it would violate the principle 
of reversibility. For example, for I ,  = 8 the three spheres assume the final configuration 
shown in figure 3 for both the Newtonian and second-order cases. However, for the 
Newtonian simulation the vertical distance between spheres 1 and 3 and sphere 2 
changes from 3.08 to 2.96 when the time changes from 380 to 430. In contrast, the 
separation in the second-order fluid remains constant at 2.82. 

We next consider a simulation of four spheres located at the corners of a square with 
sides of length I,, where the spheres are again sedimenting in the (x,y)-plane that 
contains the sphere centres. As discussed by Hocking (1964) and later simulated by 
Durlofsky et al. (1987), four spheres in such a configuration undergo a periodic 
inversion process. As shown in figure 4(a), initially this inversion consists of the upper 
two spheres catching up the lower two, forming a row in which the middle two spheres 
are separated by a distance greater than that separating either the left or right pairs of 
spheres. Subsequently, a square with side length I, forms again, but with what were 
initially the upper spheres on the bottom and what were initially the lower spheres on 
top. This inversion process repeats itself periodically, forming trajectories such as those 
shown in figure 4(b), which were calculated by Stokesian dynamics for a sphere with 
sides that are four radii in length. 

The introduction of a small amount of elasticity changes this qualitative behaviour 
in an interesting and dramatic way. Shown in figure 5 is the schematic diagram for 
trajectories in a second-order fluid at a Deborah number of 0.1 for a square with a side 
length I, equal to six sphere radii. Comparing this diagram with that of figure 4(a), one 
sees that the inversion process in the non-Newtonian case begins as expected. However, 
during the sedimentation the left and right pairs of spheres get rather close together, 
and the effect of elasticity is to cause the two pairs to separate into doublets. The two 



359 Interacting spheres in a quiescent second-order fluid 

0 0  

0 .  
t = O  

4 
0 O. 

4 
i =200 0 0  0. 

4 

4 

4 

t = 100 

0 .  
0 0 t =300 

t =400 0. .O 

% i=500 3 
FIGURE 5. Schematic diagram of four spheres sedimenting in a second-order fluid at De = 0.1. 

Initial configuration is a square with a side length of six radii. 
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FIGURE 6. Trajectories of four spheres sedimenting in a second-order fluid at De = 0.1. 

Initial configurations are squares with side lengths of (a) four and (b) six radii. 

doublets are oriented such that they would move away from each other even in a 
Newtonian fluid, with the U x  F term of (39) causing each doublet to change its 
orientation such that the line-of-centres becomes parallel to the y-axis. This change in 
orientation is similar to that calculated by Kim (1986) for spheroidal particles. 

An overview of the process is shown for squares with side lengths of 4 and 6 radii 
in figures 6(a) and 6(b), respectively. Comparing figures 6(a) and 4(b), one sees that 
there is an obvious similarity between the trajectories during the first half of the 
simulation. However, the cumulative effect of elasticity is to cause doublets to form and 
separate, as described above. The separation takes somewhat longer in the square with 
a side length of 4 radii than in that with a side length of 6 radii. In both cases the 
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FIGURE 7. The leading-order coefficient Q / D e  governing the rate at which spheres initially located at 
the vertices of regular polygons move together is plotted versus distance to the polygon centre. 
Spheres are subject to a force perpendicular to the plane containing the vertices. 

doublets ultimately are far enough apart so that their interaction is negligible. Thus, 
like in the three-sphere simulation shown in figure 2(b), one effect of elasticity seems 
to be to cause the formation of chains of particles oriented in the direction of 
sedimentation. This qualitative behaviour is reminiscent of the structures observed by 
Joseph et al. (1992, 1994) during sedimentation in a viscoelastic fluid. 

Although the simulations considered so far have involved situations in which all the 
sphere centres lie in the same plane, the method is of course equally applicable to fully 
three-dimensional problems, and indeed the simulation program explicitly includes the 
z-direction. As an example three-dimensional calculation, we consider problems with 
three, four and six spheres at the vertices of equilateral triangles, squares and hexagons 
with equal-sized sides. The spheres are subject to a force in the direction perpendicular 
to the plane containing the vertices of the polygon. Such a configuration is stable at 
zero Reynolds number. However, in the second-order fluid, in each case the spheres 
move towards the centre of the polygon. The coefficients Q / D e  that, when multiplied 
by the Deborah number De give the sphere velocities in the direction of the line joining 
the sphere centre to the centre of the polygon, are plotted as a function of the distance 
to the polygon centre I, in figure 7. In each case the velocity of the spheres increases 
with decreasing distance, with the magnitude always being largest for the configuration 
containing the greater number of spheres. 

4.3. Dynamic simulation of sedimenting suspensions 
The dramatic changes in the motion of small numbers of spheres caused by a small 
amount of elasticity are also evident in sedimenting suspensions. Experimental 
evidence for this effect can be found in the globular and finger-like structures observed 
by Allen & Uhlherr (1989) and in the clustering observations of Joseph et al. (1992, 
1994). Some qualitative insight into the development of the non-homogeneous 
microstructure in suspensions sedimenting in viscoelastic fluids can be obtained by 
Stokesian dynamics simulation. As in previous work (Brady & Bossis 1988), we confine 
the spheres to a monolayer, and model the unbounded nature of the suspension by 
using periodic boundary conditions. 
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Number of 
N 4 De simulations 

15 0.05 0.1 5 
15 0.15 0.1 5 
25 0.05 0.1 4 
25 0.15 0.1 4 
25 0.05 0.01 4 
25 0.15 0.01 4 

TABLE 1. Number of simulations at varying conditions. 

A series of such simulations has been performed with the number of spheres N in 
each periodic unit cell equalling either 15 or 25. Sphere area fractions of C$ = 0.05 and 
0.15 are considered, at Deborah numbers of 0.01 and 0.1. The number of simulations 
at each set of conditions is shown in table 1. Although 25 spheres is not expected to 
be enough to provide quantitative information, it is sufficient to obtain the qualitative 
information that one anticipates from a second-order fluid model. We note that 25- 
sphere simulations have been used to obtain quantitative information for monolayer 
simulations of sheared suspensions (Chang & Powell 1994). However, here we are 
limited to qualitative, microstructural information because of the more complicated 
nature of the sedimentation problem, in which particles are not force-free but are 
subject to an externally imposed gravitational force. 

With the exception of the periodic boundary conditions, these simulations are 
performed in much the same way as those in $4.2. However, it is necessary to replace 
the two-dimensional Simpson integration over the particle surfaces with a more 
efficient Gauss quadrature approach. The Gauss points on the sphere surfaces are 
arranged in six circular rings, with 12 Gauss points per ring, as described by 
Abramowitz & Stegun (1965). This quadrature scheme is approximately 20 times faster 
than the Simpson rule, and is sufficient to allow accurate reproduction of all the results 
presented in $4.2. 

Schematic diagrams of the locations of the spheres at various times are given in 
figure 8 (a-e) for several simulations with N = 25. The sample initial condition shown 
in figure 8(a)  is obtained by using a random number generator to identify 25 non- 
overlapping but otherwise random positions. A different initial condition is used for 
each simulation, the example depicted in figure 8 (a)  corresponding to C$ = 0.15 and 
N = 25. The other illustrations are all calculated at later times (i.e. t = 106 in figure 8b, 
t = 365 in figure 8 c, t = 485 in figure 8 d )  and t = 500 in figure 8 e, when the particles 
have clustered together to a significant extent. In general, the clustering process occurs 
faster at higher volume fractions and at higher Deborah numbers, because the elastic 
contribution to the particle interactions is strongest under those conditions. Some 
clustering is observed in every simulation performed. However, the size of the clusters 
depends on the simulation conditions, with higher volume fractions and higher 
Deborah numbers leading to larger clusters. The clusters are not isotropic, but are 
elongated in the direction of sedimentation. This formation of elongated clusters is 
qualitatively similar to the observations of Joseph et al. (1992, 1994). 

It is to be emphasized that the results shown in figure 8(a-e) are not anomalous, but 
rather are typical of what is observed in all the simulations at the corresponding 
conditions. Newtonian simulations run at the same conditions show no signs of such 
clustering behaviour. As a practical matter, we note that the formation of these clusters 
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FIGURE 8. Sample configurations for simulations with 25 spheres: (a)  initial condition for # = 0.15; 
(b) De = 0.1 and q5 = 0.15 at t = 106; (c) De = 0.1 and q5 = 0.05 at t = 365; ( d )  De = 0.01 and 
q5 = 0.15 at t = 485; (e) De = 0.01 and q5 = 0.05 at t = 500. 
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FIGURE 9. Average number of near neighbours as a function of time. 

makes it necessary to use progressively smaller time increments to avoid particle 
overlap. The time steps used in these simulations ranged from 0.25 to 0.01. Small 
amounts of overlap are handled by moving the two spheres along their line-of-centres 
to a separation of lo-’. However, in a large cluster such a process can lead to overlap 
with a third sphere, and hence the need for progressively smaller time steps. 

In order to compare the behaviour of the suspensions under the four conditions 
tested, the average number of near neighbours is plotted as a function of time in figure 
9, where the open symbols correspond to De = 0.1 and the solid symbols to De = 0.01. 
Here a ‘near neighbour ’ is defined as a sphere within a dimensionless distance of 0.1 
of another sphere. Only the 25-sphere simulations are represented in the curves shown. 
The rapid clustering that occurs at De = 0.1 and $ = 0.15 is clearly evident in the upper 
curve, which shows that at a dimensionless time of 100 nearly every sphere is close to 
at least one other sphere. Similar but less rapid clustering takes place at De = 0.1 and 
q5 = 0.05. Interestingly, upon decreasing the Deborah number by a factor of ten a 
steady state is reached, where clustering is still evident but the system appears to be 
stable. 

In figure 10 is shown the angular average of the pair distribution function g(r,  t )  for 
the simulations where N = 25, De = 0.1 and $ = 0.15. This distribution function is 
defined here as a time-dependent quantity because these simulations do not reach 
steady state. The usefulness of g(r,t) in this context is merely to provide a concise 
description of the formation of clusters under one set of conditions. The absence of any 
structure in the initial condition and the subsequent formation of structure as 
evidenced by peaks at spacings of one diameter are clearly apparent. The progression 
toward the final, clustered state can be seen by examining the curves plotted from 
different times in the simulation. 

The results suggest that a small amount of elasticity in a fluid can generate significant 
changes in the microstructure of monomodal suspensions, even at very low volume 
fractions. Although one expects the results shown here to be dependent on the size of 
the periodic unit cell, the simulations do capture the qualitative features of the 
aggregation process. Statistical fluctuations in the local particle concentration cause 
the aggregative contribution of elasticity in the fluid to be sufficiently strong to initiate 
cluster formation. The clusters themselves then interact, forming larger clusters under 
conditions where the Deborah number and area fraction are high enough. The fact that 
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FIGURE 10. Angular-averaged, time-dependent pair distribution functions g(r, t )  for t = 0,  75 and 
100 at De = 0.1 and 9 = 0.15. 

the clusters at De = 0.01 seem to reach a steady state, as indicated by figure 9, is 
possibly due to the effects of hydrodynamic dispersion. A quantitatively accurate 
calculation of the cluster size distribution undoubtedly requires simulations with a 
value of N considerably greater than the 25 spheres used in this work. 

This work was supported. by grant CTS-94-00737 from the National Science 
Foundation. 
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